Extensions 1→N→G→Q→1 with N=C22 and Q=C3×D4

Direct product G=N×Q with N=C22 and Q=C3×D4
dρLabelID
D4×C2×C648D4xC2xC696,221

Semidirect products G=N:Q with N=C22 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×D4) = D4×A4φ: C3×D4/D4C3 ⊆ Aut C22126+C2^2:(C3xD4)96,197
C222(C3×D4) = C3×C4⋊D4φ: C3×D4/C12C2 ⊆ Aut C2248C2^2:2(C3xD4)96,168
C223(C3×D4) = C3×C22≀C2φ: C3×D4/C2×C6C2 ⊆ Aut C2224C2^2:3(C3xD4)96,167

Non-split extensions G=N.Q with N=C22 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C22.1(C3×D4) = C3×C4○D8φ: C3×D4/C12C2 ⊆ Aut C22482C2^2.1(C3xD4)96,182
C22.2(C3×D4) = C3×C23⋊C4φ: C3×D4/C2×C6C2 ⊆ Aut C22244C2^2.2(C3xD4)96,49
C22.3(C3×D4) = C3×C4≀C2φ: C3×D4/C2×C6C2 ⊆ Aut C22242C2^2.3(C3xD4)96,54
C22.4(C3×D4) = C3×C22.D4φ: C3×D4/C2×C6C2 ⊆ Aut C2248C2^2.4(C3xD4)96,170
C22.5(C3×D4) = C3×C8⋊C22φ: C3×D4/C2×C6C2 ⊆ Aut C22244C2^2.5(C3xD4)96,183
C22.6(C3×D4) = C3×C8.C22φ: C3×D4/C2×C6C2 ⊆ Aut C22484C2^2.6(C3xD4)96,184
C22.7(C3×D4) = C3×C2.C42central extension (φ=1)96C2^2.7(C3xD4)96,45
C22.8(C3×D4) = C3×D4⋊C4central extension (φ=1)48C2^2.8(C3xD4)96,52
C22.9(C3×D4) = C3×Q8⋊C4central extension (φ=1)96C2^2.9(C3xD4)96,53
C22.10(C3×D4) = C3×C4.Q8central extension (φ=1)96C2^2.10(C3xD4)96,56
C22.11(C3×D4) = C3×C2.D8central extension (φ=1)96C2^2.11(C3xD4)96,57
C22.12(C3×D4) = C6×C22⋊C4central extension (φ=1)48C2^2.12(C3xD4)96,162
C22.13(C3×D4) = C6×C4⋊C4central extension (φ=1)96C2^2.13(C3xD4)96,163
C22.14(C3×D4) = C6×D8central extension (φ=1)48C2^2.14(C3xD4)96,179
C22.15(C3×D4) = C6×SD16central extension (φ=1)48C2^2.15(C3xD4)96,180
C22.16(C3×D4) = C6×Q16central extension (φ=1)96C2^2.16(C3xD4)96,181

׿
×
𝔽